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ABSTRACT
Assessment of effects of changes in weapons systems or battle tactics is difficult because of the
variations in battles and the resulting instability of measures of combat effectiveness. Even in
the relatively stable conditions of designed experimentation, traditional measures may fail to
reflect important battle events and dynamics, and sample sizes are driven high in an effort to
overcome large variances. This variation in results makes the design, conduct and evaluation of
combat experimentation a challenging endeavor, indeed. We develop and examine a measure of
combat effectiveness, based on Lanchester models, which we call the "battle trace." The battle
trace is a measure of ongoing battle results, measured as a function of time into the battle. We
discuss how such measures can be used to compare effects of factor levels in designed
comparisons, and we describe an application to evaluation of human factors in combat
simulations.

1 INTRODUCTION
Measuring and analyzing the effectiveness of combat, from one side's point of view, is a very
challenging task. Selecting appropriate measures of effectiveness is a key element of this
process. A selected measure is appropriate, when quantified in a particular context, if it
illuminates some feature of the subject of the analysis in an insightful way. Such measures give
decision makers reasonable criteria with which to distinguish the differences between situations
or alternatives. In general, a measure deemed suitable for one question may be wholly unsuited
for another, so there is no general solution to the problem of developing suitable measures of
combat effectiveness. A large number of measures relating to battle processes such as
engagements, movements, and communications, are in use today. Many of these measures are
defined in terms of a single average or accumulation over an entire battle, such as "average
number of rounds fired per engagement," or "casualty exchange ratio." Even measures involving
more than a single summary value, such as "distribution of ranges at engagement," may not
provide a sense of the evolution of the battle over time.



The analyst's view seems to contrast with the historian's view, in which the development of
battles and relative movements and contacts of forces are emphasized. These are sometimes
summarized on maps of the battlefield using arrows and other symbols to represent major events
such as force movements or attacks. Yet, many measures of effectiveness used by military
analysts to quantify the performance of military forces in combat are, at their roots, derived from
historical context. This stems from the efforts of historians to account for the performance of
combatants seen through history; so many of each type at the start of battle, so many killed at
its conclusion. Such summary analyses of battles are the beginnings of explanatory models
developed to provide understanding of why some battles result in victory while others mire in
defeat.

Both historical inspections and analytical models may fail to capture many factors such as
leadership, will, fear and suppression, which are relevant (or even of paramount importance) to
battle dynamics and ultimate battle outcomes. This is reflected in our inability to explain much
of the variation in battle measures and our insistence on using several different measures in
evaluations related to combat. Certainly, useful insights may be afforded by even very simple
models. For example, Hatzopoulos [ref. 6] develops a modern naval combat model which
incorporates some aspects of human factors and shows they can definitely influence which side
wins the battle. Another example is the Lanchester family of models which we describe next as
background for our development of a proposed measure called the "battle trace."

Lanchester models are analytical models of battles in which the casualty process is envisioned
as a continuous erosion of force levels on each side due to fires from the opposing side [ref. 7].
The changes in force levels caused by the casualty processes are modeled in terms of systems
of differential equations with an independent time variable and various terms and parameters
relating to force sizes, effectiveness of fire and logistical considerations. (A good review of
applications of Lanchester theory with mathematical emphasis on the validity of assumptions
underlying the models is given by Ancker and Gafarian [ref. 1]. See also Taylor [ref. 9] for a
rather exhaustive treatise on Lanchester theory.) Even though such Lanchester models are
simplistic, they are sometimes used as building blocks in more elaborate models [ref. 8]. They
can also be used to gain important insights into general combat considerations [ref. 9], and they
have been found to provide good fit to force size changes actually observed in certain battles [ref.
4].

It must be remembered that the information available to historians is, at best, a summary
statement of what happened with limited information as to why. Certainly, Laichester was
similarly motivated to build models of explanatory power, albeit with mathemat'.Ad tools. Both
Lanchester and historians rely primarily on the sizes of forces engaged and a :ount of resulting
attrition over time as the battle progresses. It is not surprising, given this evolution of
quantitative battle analysis, that the same information is the basis of othei analytic measures of
combat effectiveness. Notable examples are ratio measures used to de!fine force effectiveness,
such as loss exchange ratios and system exchange ratios. These aaU similar measures are the
most common measures of effectiveness employed to assess the p'otential utility of new weapon
systems and force structures.
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Exchange ratio measures are popular in part because of their relationship to both the Lanchester
and historical contexts, and in part because they are easy to compute and interpret. They are also
recognized to be deficient in explanatory power in that they aggregate the results of battle
processes in ways which tend to obscure the detail of battle. This makes any analysis of cause
and effect difficult. Furthermore, their computation generally relies on post hoc analysis of battle
results. This means they are of little use in real-time applications where measures are needed
during the course of battle for training or command system applications. These criticisms are
not an indictment of past analyses which have used these ratio measures of effectiveness. Indeed,
the traditional ratio measures are very useful in analyses of battle results. Rather, it is an
admission that a significant amount of information is lost to such ratios and that there is room
for measures which track the battle process through time. This is especially important when the
trace of the event history of a battle can be captured or reconstructed exactly. This is possible,
for example, when high resolution combat simulations are used for the analysis of weapon
capability, force structure and tactics.

The problem is to define new measures of effectiveness which overcome some of the
aforementioned shortcomings. The battle trace measure we introduce below makes use of greater
underlying information content of a battle, yet preserves the intuitive appeal of those measures
suggested by both Lanchester and historical analyses. We observe that the more classical
measures of effectiveness do not take into consideration much detailed information about the
spacial and temporal nature of a battle. Save for knowledge of the aggregate force sizes prior
to combat, the resulting attrition produced during the battle, and, perhaps, the duration of the
fight, little additional information as to the dynamic interactions between weapon systems at
various points during the battle can be discerned from most traditional measures of effectiveness.
Short of being a "replay" of the battle, quantitative measures are needed which can illuminate:

who could see whom, when, where, with what weapons;

what shots were fired, when, where, at what ranges; and

who died, when, where, and from what cause?

Beyond mere reporting of the battle as it occurred, better measures of effectiveness might also
demonstrate effects of battlefield synergism which may exist between weapons systems and the
results of the synchronization of battlefield operating systems. Battlefield operating systems
include: intelligence, maneuver, fire support, air defense, mobility/counter mobility/survivability,
combat service support, and command and control [ref. 101. Certainly, it would also be desirable qor
if the measures which contain this information allow for some comparison between different
battles and have an appealing referent baseline from which useful comparisons may be made.

0l
In this paper, we use a simple Lanchester model to motivate our development of the "battle trace" -
measure of combat effectiveness. We then consider measuring differences in battles in terms of
a distance between their corresponding battle traces, and apply this concept to battle data obtained
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from a Lanchester simulation. Finally, we apply these ideas to comparisons of effects in
designed experiments, in the relatively simple context of introduction of human factors into the
Janus combat simulation model.

2 LANCHESTER SQUARE-LAW
In analyzing any single battle, or any collection of battles, we wish to use a measure of
effectiveness appropriate for deciding which side is winning at a given moment, or which side
would win overall if the battle continued for a long time with the present characteristics. This
measure of effectiveness should quantify in some way the "combat power" of the opposing
forces. With an accurate measure of power, the force with the greater power at some point in
the battle is "winning" at that given moment. To clarify the discussion let's consider one
important analytical model, the basic Lanchester square-law model. Many of the important and
widely used analytical or simulation models incorporate features of this Lanchester model, so it
has a certain generic quality relevant to the discussion.

The Lanchester square-law model is governed by the first-order system of differential equations
given by

dx/dt = -ay; a>O, x(O) = xo,
(l)

dy/dt = -bx; b>O, y(O) = yo.

In the system, x(t) and y(t) denote the strengths of the forces X and Y at time t, respectively.
Assume that the strength of a force is simply the number of combatants in operation at time t.
The situation is idealized by assuming that x(t) and y(t) can take on real, not just non-negative
integer values. That is, we assume x(t) and y(t) are both continuously differentiable functions
of t, so they are "smooth" functions without corners or cusps on their graphs. The positive
constants a and b are called the attrition-rate or weapon-kill coefficients. The larger the value
of a, for instance, the more effective is the Y force in eliminating its opponent X force. Of
course, in reality, the attrition-rate coefficients are not likely to be constant over time and involve
human factors as well as weapon technologies. It is also improbable that attrition rates can be
measured to a high degree of precision. To find an analytical solution to the model (1), set

dy/dx = (dy/dt)/(dx/dt) = -bx/(-ay) . (2)

Separating the variables in (2) yields

ay dy = bx dx. (3)

Integrating this last equation results in

ay2 - bx 2 = c, (4)
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and substitution of the initial force strengths x(O) and y(O) provides the value of the constant of

integration:

c = ay0  - bx02. (5)

Typical solution trajectories (x(t),y(t)) in the phase plane are depicted in Figure 1.

6-

5"

4-

3->

0,

2 0.5 1 2.5
X

Figure 1. Trajectories of the Lanchester square-law model are hyperbolas in the phase plane
when c # 0.

The trajectories for c*0 are hyperbolas, and when c=O, the trajectory is the line y = r x.
When c>O, the trajectory intersects the y-axis at y = 4/a; then the Y force wins with the X
force being, annihilated. On the other hand, if c<O, the X force wins with a final strength level
of x = " .

Now consider the case where the Y force wins. The constant c must be positive, so

(yo/xo) 2 > b/a . (6)

The inequality (6) gives a necessary and sufficient condition that Y wins, under the assumptions
of the model (so that reinforcements are not permitted, for example). From the inequality one
can see that a doubling of the initial Y force level, or yo, results in a four-fold advantage for that
force, assuming the X force retains its same initial level, x0. This means that the X force must
increase its attrition-rate coefficient b (that is, its technology, training, and overall effectiveness)
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by a factor of 4 in order to keep pace with the increase in the size of the Y force, assuming the
initial strength x0 is kept at the same level. Figure 2 depicts a typical graph showing the force
levels x(t) and y(t) versus time when inequality (6) is satisfied. Observe in the figure that it is
not necessary for the initial Y force level yo to exceed the level x0 of the X force in order to
ensure victory for Y. The crucial relationship is that the initial force levels satisfy inequality (6).

200

180-

160- "

140-

.N 120

100.

80

60-

40-

20-
0 b 1'5 2b 25 3b 35 4b 45 50

Thie (mn.)
( x(0)=200. y(0)=120, a.,03. b=.01)

Figure 2. Force levels versus time, for c > 0.

The model (1) can be converted to a single second-order differential equation in y as follows:
differentiate dy/dt in (1) to obtain

d2y/dt2 = -b(dx/dt) = -b(-ay)
or

d2yf/dC - aby = 0.

It is easy to solve this last equation using standard methods from elementary differential

equations:

y(t) = yocosh 'I-Ut - x0 1a7Usinh 'bt.

Thus,

y(t)/yo = cosh 4a-i t - (x/yo)'4ab- sinh 4-H t. (7)
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(The solution for x(t) is easily found by interchanging x and y (and a and b) throughout equation
(7).) Equation (7) implies that Y's normalized force level, y(t)/y o, depends on an engagement
parameter

E = (x/y,)'Ia-b, (8)

and a time parameter

T = 4 ' t. (9)

The constant 4a represents the intensity of the battle and controls how quickly it is driven to
conclusion: the larger "ab, the shorter the length of the battle. The ratio a/b represents the
relative effectiveness of individual combatants on the two opposing sides.

Inequality (6) suggests considering the more general inequality,

(y/x) 2 > b/a. (10)

If we think of the battle as occurring at discrete time steps, then at each step t we could compare
the fraction (y(t)/x(t)) 2 to the quotient b/a. Alternatively, we rewrite (10) in the form

(x/y)2 (b/a) = c.

If c < 1, then inequality (10) holds and, at that instant in the battle, the Y force is winning. This
observation suggests comparing bx 2/ay 2 against 1. If bx 2/ay 2 < 1, then Y is winning at time t;
if bx 2/ay 2 > 1, then the X force is winning at that point in the battle. When bx2/ay 2 = 1 we have
a draw, in the sense that the sides are mutually annihilating one another.

Let us examine further the ratio bx2/ay 2 , since we do not generally know the values of a and b,
at least to any high degree of precision. Now,

bx 2/ay 2 = [-bx/(-ay)] • x/y
= [(dy/dt)/(dx/dt)](x/y)

- (Ay/Ax)(x/y)

Ay
__ Y

AX
X

where ay and Ax are Y's and X's losses, respectively, in a time interval of duration At.
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This last result suggests that we compare the ratio

Ay
a - Y(11)

Ax
x

against the number 1. We have the following results based on the Lanchester square-lhw model:

(1) if R < 1, the Y force Is winning at time t;

(2) if R > 1, the x force Is winning at time t;

(3) if R = 1, the battle is one of mutual annihilation

It is assumed that y and x are positive for any time t at which R is evaluated. If y is zero
throughout the time period [t,t+At), then, in accordance with eq. (1), Ax should also be zero for
that particular time interval, and the ratio (11) is not defined. For such cases, various options
could be followed: we might define R = 1 for that interval; we might simply suspend
computation of R for that interval; or we might let At get large enough so both y and Ax are
positive. (If y is positive but Ax is zero, then other alternatives might be followed; we will give
further consideration to this later.)

Let us interpret these results. If R<I, then Ay/y < Ax/x, so the Y force is suffering less
proportional attrition than the opposing X force; that is, Y is winning. If R>I, the situation is
reversed and Y is suffering greater proportional attrition compared to the X force: Y is losing.
Notice from eq.( 11) that if y is very large compared to x, and assuming the total kill capabilities
for both sides are about the same so Ay Ax, then R<l is highly likely. We conclude that
"bigger is better" for the Y force, especially when the forces are evenly matched in terms of kill
capabilities. This is a reasonable result.

3 BATTLE TRACE
Our preceding analysis suggests we monitor ' - ratio R over the course of a battle. To begin,
consider a battle of duration 1 hour, and compute the ratio R every At = 5 minutes based on both
friendly and enemy attrition. If it happens that Ay and Ax are both zero at the end of a 5-minute
time period, we might agree to set R=I (the stalemate value). If AX = 0 but Ay # 0, we might
agree to set R=2, and the X force is winning. If either force is completely annihilated (so y=O
or x=0), the other side automatically scores a win and no value of R is computed at that time.
The plot of R versus t (time) over the course of a given battle, subject to the above conditions,
is the battle trace. This measure is similar to elasticity measures commonly used in economics.
Bitters [ref. 3] used this measure, constrained to battle "stages," in connection with his study of
the ability of smaller forces to defeat a larger foe by applying the entire weight of its numbers
to numerically smaller subsets of the larger force in a sequence of stages. Figure 3 depicts a
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battle trace for a hypothetical battle and shows regions where X is winning and where Y is
winning. Note that use of equation (11) does not require that the atu'ition coefficients a and b
be constant. In actual battles these values vary in response to changing conditions "id battle
events. But even with attrition functiorns a(t) and b(t) in place of a and b, the battle trace given
in equation (11) remains valid. In several examples described below, we approximate a(t) and
b(t) with step functions that can have different values in the various time intervals making up the
battle period.

The next several examples present battle traces for 1-hour battles simulated with a sequence of
Lanchester square-law sub-battles with parameters changing each 5 minutes. Sets of values of
a and b are generated as outcomes on independent normal random variables at t = 0, 5, 10, ...
55 minutes, where the means of the normal distributions were selected so as give attrition
coefficients representing several types of weapons systems on each side. The values selected
gave Y a slight advantage. The variances were selected to give considerable "noise" to the

8

6
5 - t=45r

1 & Y breaks off at t=25-,

3- g

X w Ing Y wlmlng Xwinnin

battle resumes of t=314=-

0 5 10 15 20 25 30 35 40 45 0
Time (Min.)

-
'

- Baftle Trace --W- Smoothed B.T.

Figure 3. Hypothetical battle trace plot.

casualty process during the course of the battle. During each five-minute period, Lie force sizes
were decremented so as to approximate casualties in accordance with equations (1). That is, in
the k' time period, for each weapon system possessed by Y, X was decremented by Ax =
-a(tk_,)y(tk-I)At, and similarly for Y. Since a mix of forces was present, each with its own
attrition coefficients, the overall force strength for a given side wz.s represented by a weighted
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sum of strengths of individual weapon systems the side possessed at each given time point in the
battle.

These data were generated by Green in connection with other research [ref. 5]. Plots of battle
traces for six such simulated battles are shown in Figure 4.

7-

e6

5 -

E 4
0

0 10 20 30 40 50 60
Time (sac)

~--Bttle 1 -+ Batte 2 - Bttle 3
-E- Baffle 4 --- Battle 5 -- Batle 6

Figure 4. Plots of battle traces for six simulated battles.

It is doubtful that data from real battles are available which would allow computation of this
battle trace. However, with simulated battles (in field tests, with combat simulations, and
possibly with some training exercises such as those at the National Training Center), such data
may be captured. An entire battle may be decomposed into a discrete series of smaller segments
(or "mini-battles", [ref. 2]) ordered in terms of times of their occurrences. The time partitions
defining the battle segments are somewhat arbitrary. For data from battle simulations, force sizes
within each segment need not depend on how many units of each side are 2resent, but only on
how many "see" each other. Thus the number of forces xk and Yk used to calculate the value R.
of the battle trace for the k' time interval (i.e., the kh battle segment) depends on how the forces
contact one another on the terrain of the battlefield, not simply on the absolute numbers of forces
present. This inter-visibility is a function of the movement, tactics, terrain and synchronization
of battlefield operating systems. Computationally, all that is required is a reasonable selection
of the time partition size (t) and a suitable algorithm for determining the values of xk and Yk,
and possibly Axk and AYk, in the k' mini-battle.

10



To obtain values for xk and y , consider the implications of selecting quantities which correspond
to the maximum number of respective unique combat systems which have acquired at least one
system of the opposing side. This is equivalent to saying that Y. equals the number of effective
combatants in the k battle segment for side Y; that is, y, is the maximum number of Y's units
which have acquired at least one of X's units (or maintained acquisition from the preceding
segment). A symmetric definition holds for x.. To illustrate these ideas, consider the
hypothetical situation represented in Figure 5, computed with data in Table 1. Here, at time 1,
13 X combat systems confront the 11 systems of an opponent, Y. In the instant t=l of the battle
depicted, two X systems can "see" at least one Y system, thus x, = 2. Four Y systems, however,
can observe at least one X system, so y1 = 4. We suppose one of X's force and two of Y's force
has been killed by the end of the first time interval, &tl.

Table 1. Hypothetical battle data.

Time x(t) y(t) Ax Ay R

1 2 4 1 2 1

2 2 3 1 2 1.333333

3 4 3 1 2 2.666667

4 5 2 1 1 2.5

5 2 4 3 2 0.333333

6 2 2 2 1 0.5

7 1 1 1 1 1

Totals 10 11

During the second period, two X units see Y targets and three Y weapons see X targets; another
X system is killed and two more Y systems are casualties. This process continues through seven
stages of battle, at which time Y is annihilated.

4 LOG TRACE AND SYMMETRIC BATTLE TRACE
Since decision makers are frequently more familiar with additive symmetry than with reciprocal
symmetry, it may be useful to transform the battle trace R to its logarithm, log(R), which we call
"log trace." The log trace measure has a simple symmetry between the points of view of the X
force commander and the Y force commander. The battle trace is not symmetric about the
"mutual annihilation value" of 1, so plots of the battle trace for a given battle viewed from the
X and Y points of view are not simply reflections across the line R=I. This means that portions
of battle traces falling between 0 and I must be interpreted differently than those portions above
1. But plots of log trace have symmetric interpretations viewed from X's and Y's points of view,
in an additive sense. The log trace measure indicates a draw at value 0; for traces above 0 the
X force is winning, and for negative values of log(R), Y is winning. Other alternatives to

11



achieve symmetry of interpretation are possible. One attractive alternative is to plot R when R>1
and 2-R' when R<I, for example. This is the "symmetric battle trace" plotted with "+" symbols
in Figure 5 and discussed further below. In the remainder of this section, we make further
comments on the log trace.

2.5

2-

1.5-
0
I,-

.- 0.5
0

-0.5
-1

Time (perlods)
F'-- grIginol R 4 Symmetric BT

Figure 5. Plot of battle trace (square symbols) corresponding to data shown in Table 1.

Since the domain of the logarithm function does not include zero, one must ensure the arguments
involved are not zero at any point in the battle for which log trace is to be computed. That is,
noting, for the kt segment,

log(R.) = log(y0) - log(y0) - log(Axk) + log(xk),

the possibility that any of the terms Ayk, xk or xk are zero must be avoided. This can be
accomplished in any of several ways. One might control the time intervals At so they are
sufficiently large that none of the arguments is zero. This could include taking the At's to be of
differing widths, possibly depending on the data involved, if needed. One might simply suspend
calculation of log trace for time intervals in which one or more of the arguments is zero. Yet
another possibility is to add a small positive quantity to each of these terms before taking their
logarithms. For example, consider adding 1.0 to each term, so when a given term such as Ayk
is zero, the contribution to log trace, log(&y + 1) = log(l), is zero. Thus, with this definition,
the log trace measure of battle effectiveness is, within the k battle segment,

12



log tracek =

Iog(Ayk+1) - log(yk+1) - log(axe,+I) + log(xj,+1). (13)

Below, we consider how statistical inferences about battles, and in particular about differences
between battles, may be made, using the battle trace or log trace measures. It is anticipated that
the log trace measure may have simpler statistical characteristics than would have the battle trace
measure, because sums of random quantities tend to have relatively more simple distributions
than have quotients of random quantities. Indeed, in many applications it may be found that the
log trace measure is normally distributed within a given battle segment, at least to a rough
approximation. This may be due in part to the central limit theorem, and in part to the individual
random variables whose logarithms are taken in equation (13) being approximately log-normally
distributed. We also consider nonparametric comparisons of battles using the battle trace,
symmetric battle trace and log trace, below.

5 COMPARISONS OF BATTLES
We have discussed the difficulty of the task of measuring battle effectiveness, and have made
the point that no single simple measure can capture all that is of interest. This holds for the
battle trace measures as well, of course. Nevertheless, we believe comparisons of battles, in
terms of their battle traces or log traces, can contribute to an understanding of the nature of the
differences in the battles. In what follows, we discuss the use of symmetric battle traces, defined
by

= f R, if R N 1R s = 2 - R- 1, if R • 0 .

The principles below can also be applied to battle traces and log traces. We will refer to R, as
the "battle trace" in the discussion below.

We envision a context in which a designed experiment has been conducted to examine the effects
of introducing human factors into a combat simulation. Specifically, we consider an application
of these ideas to the incorporation of a new module into the Janus battle simulation model; this
module is designed to play fratricide (the killing of one's own forces), as described in a separate
section below.

How might one compare two battle traces, one from a battle fought under condition A (say, Janus
with the new fratricide module), and one battle fought under condition B (Janus without
fratricide)? One possibility is to define a notion of the distance between their respective battle
traces. In order to make sensible comparisons, it may be necessary to transform the time
domains of the battles under comparison so that they have comparable battle start and battle end
times. For simplicity, we assume this transformation has been done, and agree to choose a time
scale which makes t=O the battle start time and t=l the battle end time. More exotic
transformations of the time scales may be necessary to "synchronize" the battles under
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comparison, but we do not consider this further here. For the comparisons of Janus battles
considered in this paper, we have set the simulation parameters so that matching the battle start
times and stop times with the points 0 and 1, respectively, in all battles under consideration,
appears to give adequate synchronization of the battles.

A set of possible distance functions can be based on the LP metrics used in mathematical
analysis. With this approach, the distance between two battle traces, say btA(t) and btB(t) is given
by

UbtA-btBO = [f btA ( t)-bB ( t) 1P dt]'2P (14)
0

We suggest that the L, L2 or L, distance functions may be good candidates for use in comparing
battles. The L_ distance function, obtained by letting p---, gives the distance between two battle
traces as the supremum (over t E [0,1]) of the vertical distance between the traces:
sup,.Eo1 btA(t) - btB(t) 1. An interesting alternative notion of distance, involving the L_
distance between fitted probability surfaces related to battle outcomes, has been studied by Green
[ref. 5].

The application discussed below uses the L, distance function, which is just the (absolute) area
between the two battle traces. This definition of distance has the advantage of being interpreted
easily in terms of the graphs of the battle traces for the two individual battles. We also consider
a "score distance," defined in terms of the difference between scores computed for each battle
trace, as follows. Consider whether the battle trace is above 1 (X winning) or below I (X losing)
and whether the battle trace is increasing (X improving relative to Y) or decreasing (X worsening
relative to Y). Then measure the number of time increments the battle trace "occupies" each of
the four combinations of these conditions (see Table 2) multiplied by the weights (assigned
arbitrarily) in the four cells shown in Table 2. The score for a given battle trace is the sum of
the occupancy times in each cell multiplied by the weight for that cell.

As an example, consider the data shown in Table 1, using the symmetric battle trace measure and
counting whether the trace is

Table 2. Battle trace score weights.

log trace positive negative

increasing 3 -1

decreasing 1 -3

above or below 1, rather than positive or negative. It can be seen that the trace is above 1 and
increasing during two periods (prior to t=2 and prior to t=3); it is above 1 and decreasing in one
period (prior to t=4); the trace occupies the upper right-hand corner two periods and the lower
right cell one period. Therefore, with the weights shown in Table 2, the score for this battle is
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2(3)+1(1)+2(-1)+1(-3) = 2, suggesting X enjoyed relatively better success in the battle than did
Y.

6 DETERMINING SIGNIFICANCE IN DESIGNED EXPERIMENTS
The distance between battle traces cannot be interpreted in operational terms until the distribution
of distances is determined for battles from the same source (i.e., where the null hypothesis of no
difference in battles is true). For our application to comparisons of battle traces from two
versions of Janus, we need to establish the distributions of distances within- and between-
treatments, where "treatments" refer to the presence or absence of the fratricide module. One
possibility is to generate a large sample of independent battles, using Janus, for each treatment.
Then the distributions of distances or scores for each treatment can be compared. This
comparison might be accomplished using the Kolmogorov-Smirnov test of the hypothesis of no
difference in distributions of distances. Other non-parametric tests such as the Mann-Whitney
test or Kruskal-Wallis analysis of variance by ranks could also be applied. If the assumptions
of normality and homogeneity of variance appear to be tenable, a standard test such as the t-test
might be useful.

We believe a randomization test may be a good choice for comparisons of battle trace distances.
A randomization test works as follows: Suppose we have a random sample of n observations
from population 1 and a random sample of m observations from population 2, and suppose we
wish to test the hypothesis that the populations are the same. Suppose further that we have
defined a test statistic that we believe should tend to be large (positive) when the populations are
different, relative to values obtained when the hypothesis is true. Let the computed value of the
test statistic be to, using the data from the two observed samples. Now pool the data in the two
samples, and draw a random sample of size n (without replacement) from the pooled data. This
will determine two "pseudo samples" of sizes n and m. Compute the test statistic again, as if the
two pseudo samples drawn from the shuffled pooled data had been the original samples, and let
t, be the resulting "pseudo" value. Now draw a second pseudo sample of size n at random
(without replacement) from the pooled data, and compute the corresponding test statistic pseudo
value, t2. Continue in this fashion for some large number N of times. Next, form a histogram
of the computed pseudo test statistics t,, t2, ..., and determine the position of the actual test
statistic value, t0 , in this histogram. If the actual value is in the upper tail of the sample of
pseudo values, one may conclude the populations are different (that is, the value of the test
statistic is extraordinarily large, relative to values obtained when there is no difference in the
sources of the two samples of sizes n and m).

A randomization test using the L, distance between battle traces for ten samples from each of
two Lanchester simulations is discussed in the next section.

7 SIMULATED BATTLE TRACES FOR BATTLES WITH AND WITHOUT
FRATRICIDE
A simulation was written to generate battle traces in accordance with Lanchester "mini-battles"
within time intervals of width 10-2. The general scenario envisioned involves an attack by 400
Blue units upon a Red defending force consisting of 100 units. In the early part of the battle,
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Red has higher proportions of acquisition of Blue targets and has higher attrition coefficient (a
in eqs. (1)). As the battle progresses, the superior numbers of the attacking force begin to take
a toll jpon the numbers of surviving Red defenders. As Blue closes with Red, the Red force
begins to withdraw and the attrition coefficient (b) of Blue increases while that of Red decreases.
At the beginning of the battle, the Red attrition coefficient is .05 and that for Blue is .01. These
values are adjusted stochastically as the battle progresses so that near the end of the battle these
values are, on average (over many runs of the simulation), approximately equal to .03.
Additional stochastic variation in the simulation outputs was induced by drawing, for each period
of the battle, the number of Red units that could see at least one Blue unit, y in equation 11,
from an appropriate distribution which depended on the number of Red and Blue units alive at
the beginning of the period. The values of x in eq. (11) were similarly determined stochastically
as functions of the numbers of Blue and Red units still alive, as the battle progressed.

Finally, the simulation was modified to represent fratricide, for half of the simulation runs. This
was done by further degrading the size of the Blue force at the end of each battle period so as
to decrease it by .05%, representing losses due to fratricide. Over the course of 100 periods of
battle, the overall level of fratricide losses to the Blue force amounted to approximately 3% of
the initial Blue strength. Plots of the symmetric battle trace for three battles are shown in Figure
6. One symmetric trace is for the simulation without fratricide; one is for a paired battle with
fratricide (paired on a random number stream used in the simulation); and one symmetric battle
trace is for a battle with fratricide, with an independent random number stream.
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Figure 6. Symmetric battle traces for three simulated battles.
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8 COMPARING SIMULATION WITH AND WITHOUT FRATRICIDE
To illustrate how battle traces might be used to determine whether there is a difference between
simulation versions, we ran the simulation described above to generate symmetric battle traces
for 10 battles without fratricide and 10 battles with fratricide. These battle traces were used to
conduct several tests of the null hypothesis that there is no difference between the simulated
battles with and without-fratricide. The purpose of these illustrations is to show how the tests
suggested in preceding sections might be applied to comparisons of Janus(A) and Janus(A)
modified to include fratricide.

We computed the scores for each battle trace in accordance with the weights shown in Table 2;
the results are as follows:

no fratricide: -16, -18, -8, 2, -36, -52, -16, -28, 10, -14;
fratricide: -42, -36, -10, -32, 8, -52, -24, -20, -24, -2.

These scores were compared using a Mann-Whitney test. The sum of ranks for the ten scores
corresponding to simulations with fratricide is 92, which is significant at the .16 level (one sided).
Thus the scores test does not indicate there is a significant degradation in scores due to fratricide,
as played in the simulation.

Two alternate tests were based on the areas between symmetric battle traces; that is, with the L,
distance between the symmetric battle traces. In the first alternate test, a set of 10 distances was
computed between pairs of randomly selected traces, one from the set of traces for battles without
fratricide, and one from the set of traces for battles with fratricide. A second set of areas was
constructed using pairs of traces from battles without fratricide and pairs of traces for battles with
fratricide. A two-sample t-test was conducted with the summary statistics as follows:

mean of 10 areas for fratricide-non fratricide pairs: 686.25
(standard deviation = 163.07)

mean of 9 areas for fratricide pairs: 615.6
(std. dev. = 117.37)

mean of 9 areas for non-fratricide pairs: 635.4
(std. dev. = 92.16)

t = (686.25 - 625.50)/73.35 = .83; d.f.=25.

This value of t corresponds to a significance level of .22 (one sided), which agrees with the
conclusion of the scores test above.
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A second test, based on the L, distance between fratricide and non-fratricide symmetric battle
traces, was conducted using the randomization test described above. For this test, the test
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Figure 7. Histogram of pseudo test statistic values.

statistic was taken to be the average of 10 (absolute) areas between symmetric battle traces. The
actual test statistic, t,. had value 686.27. An additional 1000 values of the test statistic were
calculated. For each pseudo value,t,, t2, ..., ten pairs of symmetric battle traces were selected at
random without replacement from the pooled collection of 20 battle traces and the average of the
L1 distances was computed. The histogram in Figure 7 shows the distribution of pseudo values
of the test statistic. The actual value, to = 686.27 falls at the 1 -.367 quantile of this distribution,
so the randomization test gives significance level .37 for the test (two-sided). Again, this is
consistent with the conclusion made with the scores test.

9 CONCLUSION
The battle trace appears to have potential for use in modeling and evaluation applications. It is
interesting to note that this application of the Lanchester combat model does not require
determination or estimation, before hand, of the attrition coefficients which are typically quite
difficult to obtain and justify. The notion that the attrition coefficients are not static, but rather
change over time as the battle progresses is important. Useful analytical models of combat might
arise through considerations of how these coefficients change in response to battle events.

18



REFERENCES

1. Ancker, C.J., and Gafarian, A.V., The Validit ., of Assumptions Underlying Current Uses
of Lanchester Attrition Rates, pp 1-40, U.S. Army TRADOC Analysis Command - White
Sands Missile Range, NM 88002-5502, Technical Document TRAC-WSMR-TD-7-88,
March, 1988.

2 Bathe, M.R., Maxwell, J.G., and McNaught, K.R., Modelling Combat as a Series of
Mini-battles, European Research Office of the United States Army, London, England,
Contract NO. DAJA45-86-6-C-0053, November, 1988.

3. Bitters, D.L., Naval Postgraduate School Department of Operations Research Colloquium
Presentation, "Just how the heck do you fight outnumbered and win ?", December 1990.

4. Engel, J.H., A Verification of Lanchester's Law, Operations Research, 2, 1954.

5. Green, J.R., Comiparing Combat Models Using Analytical Surrogates, Naval Postgraduate
School Thesis, 1991.

6. Hatzopoulos, E., A Modern Naval Combat Model, Naval Postgraduate School Thesis,
1990.

7. Lanchester, F.W., Aircraft Waifare, the Dawn of the Fourth Arm, Teptrec, Constable &
Co., Ltd., 1916.

8. Romero, P.J., A New Approach for the Design and Evaluation of Land Defence Concepts,
pp 115-177, RAND Corporation Technical Report R-3643-A, March 1988.

9. Taylor, J.G., Lanchester Models of Warfare, Military Applications Section, Operations
Research Society of America, two volumes, 1983.

10. TRADOC Pamphlet 11-9, Blueprint of the Battlefield, 1991.

19



DISTRIBUTION LIST

Commander 1
U.S. Army Training and Doctrine Command
ATTN: ATCD
Fort Monroe, VA 23651-5000

HQDA I
DUSA-OR
ATIN: Mr. Walter W. Hollis
Room 2E660, The Pentagon
Washington, D.C. 20310-0102

Commander 1
U.S. Army TRADOC Analysis Command
ATTrN: ATRC
Fort Leavenworth, KS 66027-5200

HQDA 3
ATIN: DAPE-MR
Washington, DC 20310-0300

Director 1
U.S. Army TRADOC Analysis Command-WSMR
ATTN: ATRC-W
White Sands Missile Range, NM 88002-5502

Director 1
U.S. Army TRADOC Analysis Command-WSMR
ATTN: ATRC-WSL (Technical Library)
White Sands Missile Range, NM 88002-5502

Director 1
U.S. Army TRADOC Research Activities
ATTN: ATRC-RDM
P.O Box 8692, Monterey, CA 93943-0692

Director I
U.S. Army TRADOC Analysis Command-Ft. Benjamin Harrison
ATTN: ATRC-FB
Fort Benjamin Harrison, IN 46216-5000

20



Conflict Simulation Center 1
Lawrence Livermore National Laboritory
P.O. Box 808 L-315
Livermore, CA 94550

U.S. Military Academy 1
Department of Systems Engineering
ATTN: COL James Kays
West Point, NY 10996

U.S. Military Academy 1
Department of Mathematics
ATTN: COL Frank Giordano
West Point, NY 10996

Rand Corporation 1
ATTN:
1700 Main Street
Santa Monica, CA 90406-2138

Director 1
U.S. Army Concepts Analysis Agency
8120 Woodmont Ave.
Bethesda, MD 20814-2797

U.S. Army Combined Arms Research Library (CARL) 1
ATTN: ATZL-SWS-L
Fort Leavenworth, KS 66027

Defense Technical Information Center 2
ATTN: DTIC, TCA
Cameron Station
Alexandria, VA 22314

Prof. David L. Bitters 1
6427 Sagamore Rd.
Shawnee Mission, KS 66208

Prof. Wayne Hughes 1
Code OR/HI
Naval Postgraduate School
Monterey, CA 93943

21



Prof. Don Barr 5
Code MA/Ba
Naval Postgraduate School
Monterey, CA 93943

Prof. Maurice Weir 5
Code MA/Wc
Naval Postgraduate School
Monterey, CA 93943

Bard Mansager
Code MA/
Naval Postgraduate School
Monterey, CA 93943

Prof. Samuel Parry
Code OR/Py
Naval Postgraduate School
Monterey, CA 93943

MAJ James Hoffman 5
Code OR/Hf
Naval Postgraduate School
Monterey, CA 93943

Commander
U.S. Army TEXCOM Experimentation Center
ATTN: ATCT-TE-ST (Mr. West)
Jolon, CA 93928

Director of Research
Administration
Code 08
Naval Postgraduate School
Monterey, CA 93943

Library
Code 52 2
Naval Postgraduate School
Monterey, CA 93943

22



Prof. Harold Fredricksen
Code MA/Fs
Department of Mathematics
Naval Postgraduate School
Monterey, CA 93943

23


